
Week 6 - Friday



 What did we talk about last time?
 Pointers
 Command line arguments









 Imagine the following declarations

 What are the types of the following? (one of them is illegal syntax)
1. &value
2. *pointer
3. &pointer
4. *value
5. pointer[0]
6. pointer + 4
7. value + 4
8. *(pointer + 4)
9. *&value

int value = 10;
int *pointer = &value;



 Let's write a function that takes a pointer to a char
 If the char is an upper case letter, we change it to lower case
 Otherwise, we do nothing
 Remember that most char values are not letters!

 Prototype:

void makeLower(char* letter);



 Functions can return pointers
 If you get a pointer back, you can update the value that it points to
 Pointers can also be used to give you a different view into an array
char* moveForward(char* string) {
return string + 1;

}

char* word = "pig feet";
while (*word) {
printf ("%s\n", word);
word = moveForward (word);

}



 Unfortunately, you can't return a pointer to a local variable
 Well, you can, but it would be crazy

 It would be pointing to a value that is no longer on the stack
 Maybe it's still there…
 But the next time a function's called, it could be blown away



int* getPointer()
{
int value = 5;
int* pointer = &value;
return pointer;

}

int* p = getPointer();
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 Just as we can declare a pointer that points at a particular data 
type, we can declare a pointer to a pointer

 Simply add another star

int value = 5;
int* pointer;
int** amazingPointer;
pointer = &value;
amazingPointer = &pointer;



 Well, a pointer to a pointer (**) lets you change the value of 
the pointer in a function

 Doing so can be useful for linked lists or other situations 
where you need to change a pointer

 Pointers to pointers are also used to keep track of dynamically 
allocated 2D arrays



 Can you have a pointer to a pointer to a pointer to a pointer… ?

 Absolutely!
 The C standard mandates at least 12 modifiers are allowed for a 

declaration
 Most implementations of gcc allow for tens of thousands of stars
 There is no reason to do this, however

int*********** madness;



Three-Star Programmer

A rating system for C-programmers. The more indirect your pointers are (i.e. the more 
"*" before your variables), the higher your reputation will be. No-star C-programmers 
are virtually non-existent, as virtually all non-trivial programs require use of pointers. 
Most are one-star programmers. In the old times (well, I'm young, so these look like 
old times to me at least), one would occasionally find a piece of code done by a three-
star programmer and shiver with awe.

Some people even claimed they'd seen three-star code with function pointers 
involved, on more than one level of indirection. Sounded as real as UFOs to me.

Just to be clear: Being called a Three-Star Programmer is usually not a compliment.

From C2.com







 Input with scanf()
 Dynamic memory allocation



 Keep reading K&R chapter 5
 Work on Project 3
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