
Week 6 - Friday

 What did we talk about last time?
 Pointers
 Command line arguments

 Imagine the following declarations

 What are the types of the following? (one of them is illegal syntax)
1. &value
2. *pointer
3. &pointer
4. *value
5. pointer[0]
6. pointer + 4
7. value + 4
8. *(pointer + 4)
9. *&value

int value = 10;
int *pointer = &value;

 Let's write a function that takes a pointer to a char
 If the char is an upper case letter, we change it to lower case
 Otherwise, we do nothing
 Remember that most char values are not letters!

 Prototype:

void makeLower(char* letter);

 Functions can return pointers
 If you get a pointer back, you can update the value that it points to
 Pointers can also be used to give you a different view into an array
char* moveForward(char* string) {
return string + 1;

}

char* word = "pig feet";
while (*word) {
printf ("%s\n", word);
word = moveForward (word);

}

 Unfortunately, you can't return a pointer to a local variable
 Well, you can, but it would be crazy

 It would be pointing to a value that is no longer on the stack
 Maybe it's still there…
 But the next time a function's called, it could be blown away

int* getPointer()
{
int value = 5;
int* pointer = &value;
return pointer;

}

int* p = getPointer();

getPointer

pointer

value

main

p

main

p

After return

 Just as we can declare a pointer that points at a particular data
type, we can declare a pointer to a pointer

 Simply add another star

int value = 5;
int* pointer;
int** amazingPointer;
pointer = &value;
amazingPointer = &pointer;

 Well, a pointer to a pointer (**) lets you change the value of
the pointer in a function

 Doing so can be useful for linked lists or other situations
where you need to change a pointer

 Pointers to pointers are also used to keep track of dynamically
allocated 2D arrays

 Can you have a pointer to a pointer to a pointer to a pointer… ?

 Absolutely!
 The C standard mandates at least 12 modifiers are allowed for a

declaration
 Most implementations of gcc allow for tens of thousands of stars
 There is no reason to do this, however

int*********** madness;

Three-Star Programmer

A rating system for C-programmers. The more indirect your pointers are (i.e. the more
"*" before your variables), the higher your reputation will be. No-star C-programmers
are virtually non-existent, as virtually all non-trivial programs require use of pointers.
Most are one-star programmers. In the old times (well, I'm young, so these look like
old times to me at least), one would occasionally find a piece of code done by a three-
star programmer and shiver with awe.

Some people even claimed they'd seen three-star code with function pointers
involved, on more than one level of indirection. Sounded as real as UFOs to me.

Just to be clear: Being called a Three-Star Programmer is usually not a compliment.

From C2.com

 Input with scanf()
 Dynamic memory allocation

 Keep reading K&R chapter 5
 Work on Project 3

	COMP 2400
	Last time
	Questions?
	Project 3
	Exam 1 Post Mortem
	Pointer problems
	Pass pointer example
	Returning pointers
	Pointer return problems
	Stack visualization
	Pointers to Pointers
	Pointers to pointers
	Why would we want to do that?
	What's the limit?
	Quotes
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

